A Novel Bidirectional DC-DC Converter With Flyback Snubber For Hybrid Electric Vehicles

Divya K.Nair¹, Elizabeth Rajan²
M.Tech scholar, Dept of EEE, AmalJyothiCollege of Engineering, Kanjirappilly, India¹
Assistant professor, Dept of EEE, AmalJyothi College of Engineering, Kanjirappilly, India²

Abstract: Hybrid electric Vehicles combine the benefits of engine, electric motor and batteries to provide improved fuel economy. A converter is needed in hybrid Electric Vehicle for charging and discharging of the batteries. So a charging and discharging can be combined in one circuit topology known as bidirectional DC-DC converter. Here the output is completely isolated from input, so an isolated bidirectional Dc-DC converter is used. In the bidirectional DC-DC converter, there occurs overvoltage and overcurrent stress, which can be reduced by snubber circuits. Various technologies such as RCD, active clamp and flyback snubber for bidirectional DC-DC converter are compared. The bidirectional DC-DC converter with flyback snubber is explained in detail. The simulations are carried out using Simulink/MATLAB 7.6.0 (R2009b) package. The hardware is done using PIC16F877A, a microcontroller to generate the PWM pulses for the MOSFET switches so that harmonics in the circuit can be reduced.

Keywords: Hybrid Electric Vehicles, Bidirectional DC-DC converter, Flyback Snubber, RCD Snubber, Active Clamp Snubber

I. INTRODUCTION

Electric vehicles, Hybrid Electric Vehicles have been typically proposed to replace conventional vehicles in the near future. The inherent flexibility of Hybrid Electric Vehicles makes them suited for personal transportation and military applications. The major components are battery, engine, electric motor which also can work as generator and power electronic equipment. Hybrid Electric Vehicle combines the benefits of engine and electric motor to provide improved fuel economy. Engine provides most of the vehicle’s power and the additional power is provided by the motor when needed such as for accelerating and passing. The electric power for the motor is generated from regenerative braking and from the engine, so Hybrid Electric vehicle don’t have to be “plugged” into an electric outlet to recharge [4]. Batteries in a Hybrid Electric Vehicle are usually required to backup power for power. Their voltage levels are typically much lower than dc bus voltage. Some converters are only suitable for stepping up or stepping down the voltage. Bidirectional converter is used for both stepping up and stepping down the voltage. Bidirectional converters for charging/discharging the batteries are therefore required.

In Fig.1, the left hand side is a low voltage side and right hand side is a high voltage side. Low voltage side consists of battery and current fed full bridge and high voltage side consist of voltage fed full bridge. Low voltage side and high voltage side is separated by an isolation transformer with turns ratio, 1:n. Inductor, \(L_m \) acts as boost inductor when power flows from the low voltage side to high voltage side, which is described by boost mode of operation. On the other hand, inductor, \(L_m \) performs output filtering, when power flows from high voltage to low voltage side, which is described by buck operation. But in the main circuit there occurs over voltage and over current stress which can be reduced by the snubber circuits [1].

The transformer with a current fed full bridge lead to high voltage spike and high current stress across the switches because of the leakage inductance of the transformer. So a snubber circuit is needed to limit the voltage spike and current stress. Snubber circuits used in bidirectional converter are:-
The objective of the paper is to compare bidirectional DC-DC converter with RCD, active clamp and flyback snubber. From the comparison, to prove that flyback snubber in the bidirectional converter is better to reduce the current stress and voltage spikes of the active switches. The Section I gives the Introduction of the bidirectional converter for hybrid electric vehicle. Section II is helpful to understand the background of related work. Section III explains the simulations and its results and the last section IV concludes the paper and followed by the references.

II. CIRCUIT DESCRIPTION

The proposed isolated bidirectional full-bridge DC-DC converter with a flyback snubber is shown in Fig. 2. The converter is operated with two modes which are buck mode and boost mode. Fig. 2 consists of a current-fed switch bridge, a flyback snubber at the low-voltage side, and a voltage-fed bridge at the high-voltage side. Inductor L_m performs output filtering when power flows from the high-voltage side to the batteries, which is denoted as a buck mode. On the other hand, it works in boost mode when power is transferred from the batteries to the high-voltage side.

![Fig.2 Isolated bidirectional full-bridge DC-DC converter with a flyback snubber](image)

The clamp branch capacitor C_C and diode D_C are used to absorb the current difference between current-fed inductor L_m and leakage inductance L_a of isolation transformer T_a during switching commutation. The flyback snubber can be independently controlled to regulate V_{C_C} to the desired value, which is just slightly higher than V_{AB}. Thus, the voltage stress of switches M_1-M_4 can be limited to a low level. A bidirectional DC-DC converter has two types of conversions: step-up conversion (boost mode) and step-down conversion (buck mode). In boost mode, switches M_1-M_4 are controlled, and the body diodes of switches M_5-M_8 are used as a rectifier. In buck mode, switches M_5-M_8 are controlled, and the body diodes of switches M_1-M_4 operate as a rectifier.

A. STEP UP OPERATION

First of all, all switches M_1-M_4 are turned on, so the primary side of the transformer is short circuit and therefore $V_{AB}=0$. Inductor L is charged by the battery. At t_1, M_3 & M_4 remain conducting, so V_{AB} is present. Clamping diode D_C continues to conduct until the current difference drops to zero at t_2. Moreover, D_3 and D_4 are conducting to transfer the power. During this interval (i_1-i_2), energy stored in the inductor is transferred to the clamp capacitor C_C. V_{C_C} is rising at the interval t_1-t_2 and $i_1=i_2$ condition is reached. During t_2-t_3, D_2 stops conduction and flyback snubber starts to operate. C_C is discharging and the flyback switch is turned on and the energy is stored in flyback snubber as flux. In the interval t_3-t_4, energy stored in the inductor is transferred to high voltage side. Over this interval, flyback snubber will operate independently to regulate V_{C_C}, V_{C_R}. Energy stored in the transformer of the flyback snubber is transferred to the output when flyback switch turns off. At t_4, V_C has been regulated to V_{C_R}, and the snubber remains idle. Over this interval the main power stage is still transferring power from low voltage to high voltage side. It stops at t_5 and completes a half switching cycle operation.

![Fig.3 Modes of Operation](image)
B. **STEP DOWN OPERATION**

During the time period $t_0 - t_1$, switches M_3 and M_8 are on, while switches M_6 and M_7 are in the off state. High side voltage is immediately exerted on the transformer and the whole voltage is exerted on the transformer causing current to rise. With transformer current, i_s increasing linearly towards the load current at t_1, switches, M_1 and M_4 are conducting to transfer the power and the voltage across the transformer terminals on the current fed side changes immediately to reflect the voltage from the voltage fed side.

At t_1, switch M_8 remain conducting, while switch M_5 is turned off. Diode, D_8 starts to conduct the freewheeling leakage current. Transformer current reaches the load current level at t_1 and starts to decrease during the interval $t_1 - t_2$ and voltage V_{AB} starts to decrease. The clamping diode, D_c starts to conduct during this interval.

At t_2, with diode, D_6 conducting, switch M_6 can be turned on under ZVS. At t_3, switch M_8 remains conducting, while switch M_8 is turned off. Diode, D_7 then starts to conduct the freewheeling leakage current.

At t_4, with the diode, D_7 conducting, switch M_7 can be turned on under ZVS. Over this interval, the active switches change to the other pair of diagonal switches and the voltage on the transformer reverse its polarity to balance the flux and to alleviate the transient voltage problem. It stops at t_5 and completes a half switching cycle operation.

III. **SIMULATIONS**

The simulation of the proposed paper is carried out using MATLAB software. The closed loop simulation of buck mode and boost mode is done separately. For closed loop simulation, a voltage and current feedback circuit is considered. The isolated bidirectional DC-DC full bridge converter with RCD snubber, active clamp snubber flyback snubber is simulated. The hybrid electric vehicles using isolated bidirectional DC-DC converter with a flyback snubber is also simulated.
Fig. 6 Simulation result of bidirectional full bridge DC-DC converter with RCD snubber

Fig. 7 Simulation circuit of bidirectional full bridge DC-DC converter with active clamping snubber

Fig. 8 Simulation result of bidirectional full bridge DC-DC converter with active clamping snubber

Fig. 9 Simulation circuit of open loop bidirectional full bridge DC-DC converter without flyback snubber - Boost operation
We obtain an output voltage of 381.2V for open loop bidirectional full bridge DC-DC converter without flyback snubber.

We obtain a speed of 58.1 rad/sec for the bidirectional full bridge DC-DC converter with flyback snubber—Boost open loop operation.

We obtain a speed of 58.1 rad/sec for the bidirectional full bridge DC-DC converter with flyback snubber—Boost open loop operation with output voltage 350V.
Fig. 15 Simulation result of bidirectional full bridge DC-DC converter with flyback snubber with DC Motor – Boost closed loop operation with an output voltage of 350.6V.

Fig. 16 Simulation result of bidirectional full bridge DC-DC converter with flyback snubber with DC Motor – Boost closed loop operation [Speed curve] with a speed of 58.1 rad/sec.

Fig. 17 Simulation circuit of open loop bidirectional full bridge DC-DC converter without flyback snubber - Buck operation.

Fig. 18 Simulation result of open loop bidirectional full bridge DC-DC converter without flyback snubber - Buck operation.
We obtain an output voltage of 42.86V for open loop bidirectional full bridge DC-DC converter without flyback snubber - Buck operation.

![Simulation circuit of bidirectional full bridge DC-DC converter with flyback snubber with DC motor - Buck open loop operation](image1)

![Simulation result of bidirectional full bridge DC-DC converter with flyback snubber with DC Motor - Buck open loop operation with an output voltage of 28.4V.](image2)

The simulation results of open loop and closed loop control of isolated bidirectional DC-DC converter with and without flyback snubber for various loads are done. DC motor as a load is used for the simulation in hybrid vehicle application.

The input 230V is stepped down to 15v using a step-down transformer and it is rectified to dc by the bridge rectifier. In boost mode, the output of the rectifier is boosted by a step-up transformer of ratio 12:230. The output is converter into ac by an inverter. The load used is a resistive load of rating 1K, 10W. Fig.23 shows the photograph of the prototype converter.
IV. CONCLUSION

The bidirectional DC-DC converter with flyback snubber is proposed for hybrid electric vehicles. Compared to RCD and Active clamp snubber, flyback snubber for converter provides the better efficiency. Simulations and experimental setup are described in this paper.

ACKNOWLEDGMENT

The authors acknowledge gratefully for the support of Electrical and Electronics Department of AmalJyothi college of Engineering, Kanjirapally.

REFERENCES

Biography

Divya K. Nair is a PG scholar doing her M. Tech in Power Electronics and Power Systems in AmalJyothi College of Engineering, Kanjirapally. Earlier she has completed her undergraduate in the field of Electrical and Electronics Engineering in Mar Athanasius College of Engineering, Kothamangalam.

Elizabeth Rajan has completed her B. Tech in Electrical and Electronics Engineering from St. Joseph College of Engineering, Pala and M. Tech in Power Electronics and Drives from Karunya University, Coimbatore. She currently holds the post of Assistant Professor in the Department of Electrical and Electronics, AmalJyothi