

| e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| <u>www.ijareeie.com</u> | Impact Factor: 6.392|

||Volume 9, Issue 4, April 2020||

# **Transmission Pricing Methodology based on Particle Swarm Optimization**

Abhishek Saxena<sup>1</sup>, Upendra Kumar Bhusan<sup>2</sup>

Assistant Professor, Department of Electrical Engineering, ITM University, Gwalior, Madhya Pradesh, India<sup>1, 2</sup>

**ABSTRACT:** In deregulated power market analysis and management of wheeling prices across each producer and customer is one of the most crucial and challenging task. Wheeling prices management is carried out to calculate, reduce price and share profit between users (producer and customer) and transmission owner. The better way to manage wheeling prices and make profit can be adjustment of power flow control and share profit between all trading parties. Mostly transmission owners adopted absolute approach for price calculation due to efficient use and counter flow charges are to be paid by users. But if transmission owner and users will share the benefits of the counter flow by using profit sharing factor decided by regulatory body and power flows optimize during process then all trading parties can take benefit. Total price of transmission in power flow based methods is depend on power flow and therefore wheeling prices analysis is a complex combinational optimization problem in which involve non linear functions having multiple local minima and nonlinear discontinues constraints. Here wheeling prices management is formulated based on non linear constraints multi objective optimization problem of optimal power flow. In this paper wheeling price analysis to calculate counter flow and optimize power using genetic algorithm and particle swarm optimizations which are population based algorithms. Here effectiveness of PSO and GA has been demonstrated on IEEE-30 bus system and is found to be superior PSO algorithm.

#### I. INTRODUCTION

The main objective of wheeling prices management in power market is to accurately determine transmission usage in order to implement usage based cost allocation across each producer and customer. Wheeling price management is depend on several variables as line length, cost across each transmission line, power flow etc. [1]. Wheeling price calculation method mostly classified into embedded cost and incremental cost or marginal cost [2-5] categories. In above cost methods embedded cost methods are used mostly in power industry because of fairness to all producers and customers, easily measurable electrical cost etc. There are several types of embedded cost method

all producers and customers, easily measurable electrical cost etc.. There are several types of embedded cost method based on real power flow as postage stamp, contract path, MW-mile [2-7] and real and reactive power flow based MVA mile method [8] used commonly in power industry.

Postage stamp method is popular due to simplicity but not frequently used due to ignore actual power flow and in contract path method actual path taken by transaction does not flow only specified contract path therefore of transmission outside the contracted path [k.l.lo]. So in real Power flow MW-mile method and with real and reactive power flow MVA-mile method is more widely used. This is because in transmission system determining an accurate transmission usage could be difficult due to the non linear nature of Power flow [1].therefore power flow based methods are suitable for practical power system. There are three different MW-mile and MVA-mile approaches used to determine wheeling prices [8-9] as absolute, reserve and dominant or positive or zero counter flow approach. Among all absolute approach is most popular because provide more revenue to the Transco's. Somewhere zero counter flow and reserve method are also used but they are not easily acceptable by Transco's [10-11].

In this scenario, if price of counter flow or difference of used absolute cost and used dominant or positive or zero counter flow approach will divide between users and transmission owner using profit sharing factor decided by regulatory body and users profit also divide between producer and customer according to their participation then this approach can be decide all trading parties benefits [12]. In this paper two approaches used absolute and zero counter flow method with MW-mile and MVA –mile to calculate counter flow price and best possible solution can be find to use better optimization technique. Here we used Genetic algorithm and particle swarm optimization for optimize power flow and finally calculate price difference between absolute and zero counter flow (difference is called

#### | e-ISSN: 2278 - 8875, p-ISSN: 2320 - 3765| www.ijareeie.com | Impact Factor: 6.392|



||Volume 9, Issue 4, April 2020||

negative flow or counter flow price) are divide between users and transmission owner using profit sharing factor decided by regulatory body and users profit also divide between producer and customer according to their participation. Due to counter flow available transfer capability are also increased across transmission line [13]. Here distribution factor based tracing [14-15] is used to trace the system.

Genetic algorithms are adaptive heuristic search based on the evolutionary ideas of natural selection and genetics [16]. It's start with generation of initial population and then selection, crossover and mutation are performed until the best population is found [17].

Particle swarm optimization is a population based stochastic optimization techniques inspired by social behavior of bird flocking or fish schooling [18].here each potential solution is regarded as a particle and a set which is composed of particles is called a swarm [19].In GAs chromosomes share information with each other so the whole population likes a one group toward an optimal area and in PSO only gBest(or IBest) gives out the information to others. Then in PSO all the particles tend to converge to the best solution quickly even in the local in most cases [18].

#### **II. WHEELING PRICE ASSESSMENT**

For assessment of wheeling different methodologies MW mile for active power flow and MVA mile for active and reactive power flow are to be used. The discussion about both methods and their sub methods as follows: A. MW-mile method

Power flow based MW-mile methodology allocates the Charges for each transmission facility to [14, 28-29] transmission Transactions based **on** the extent of use of that facility by these transactions. As can be seen the dimension of power (MW) and distance (mile).

$$TC_{t} = TC * \frac{\sum_{k \in K} C_{k} L_{k} P_{t,k}}{\sum_{t \in T} * \sum_{k \in K} C_{k} L_{k} P_{t,k}}$$
(1)

Where  $TC_t$  price allocation of network user t, TC is the total transmission cost,  $C_k$  is cost per mw per unit length of line k,  $L_k$  is line length, P is power flow in line k due to user t, T is user set and K is transmission line set. a. Used absolute MW-mile method

In used method users are pay based on actual power flow only. With this in absolute approach counter flows are also pay by users. This method show efficient use and not guarantee to recovery of fixed transmission price [3]. Transmission owner prefer this absolute method for more profit. As can be seen that the dimension of power in MW.

$$TC_{t} = \sum_{k \in K} C_{k} \frac{\left|F_{t,k}\right|}{F_{k,\max}}$$
<sup>(2)</sup>

For where  $TC_t$  price allocation of network user t,  $C_k$  is cost per mw per unit length of line k,  $F_{t,k}$  is the power flow on line k by user t,  $F_{k,max}$  is the capacity of line k and K is transmission line set.

b. Used zero counter flow or positive flow method

In zero counter flow or positive flow users pay only for positive flow and nothing for the counter flow [3]. As can be seen that the dimension of power in MW.

$$TC_{t} = \sum_{k \in K} C_{k} \frac{F_{t,k}}{F_{k,\max}} , \quad F_{t,k} > 0$$
(3)

For where  $TC_t$  price allocation of network user t,  $C_k$  is cost per mw per unit length of line k,  $F_{t,k}$  is the power flow on line k by user t,  $F_{k,max}$  is the capacity of line k and K is transmission line set.

#### B. MVA-Mile method

MVA mile is an extended version of MW mile method .the extension is additional reactive power flow charges with active flow charges. All the methods and sub methods as absolute, reserve and zero counter flow can be implementing with MVA mile method as an extension.

| e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| www.ijareeie.com | Impact Factor: 6.392|



||Volume 9, Issue 4, April 2020||

#### **III. PROBLEM FORMULATION**

Optimal power flow and distribution factor have to be calculate for calculation of price. Descriptions of problem areas under:

A. optimal power flow calculation

 $\left[\sum P_{gg} - (baseMVA * \sum P) - P_{dt}\right]$ 

Calculation of power flow come from result of an optimal power flow calculation using fixed generation input data. Optimal power dispatch problem including transmission losses function as [9, 10]:

$$MinF_{T} = \sum_{n=1}^{n} F_{n}$$

$$F_{n} = a_{n}P_{gg}^{2} + b_{n}P_{gg} + \sum C_{n} +$$
(4)
(5)

Where  $a_n, b_n, c_n$  are generator cost,  $P_{gg}$  generator power  $P_{dt}$  distribution power in transmission line.

B. Profit sharing factor

To determine power flow impact in transmission lines we can explain power flow as follows [7]

$$\Delta P_i = \left| \pm P_{t,i} \right| - \left| \pm P_{b,i} \right| \tag{6}$$

Where  $\Delta P_i$  is power flow impact in line 'I',  $P_{t,I}$  the power flow in line 'I' during transaction and  $P_{b,I}$  the power flow in line 'I' for base case.

 $\Delta P$  Is the negative power flow impact if  $|\pm P_t| < |\pm P_b|$ .

The submission of the negative power flow impact incurred the line which was negative and taken as an absolute value and then using profit sharing factor 'r'. For 'n' lines it can be written as:

$$\frac{1}{r}\sum_{i}^{n} \left| \Delta P_{i} \right| = \frac{\Delta P_{neg}}{r} \quad \text{For all } \Delta P_{i} < 0 \tag{7}$$

Where 'r' is the profit sharing factor used to determine sharing of profit due to negative or counter flow between transmission owner and users. The profit sharing factor is determined practically by regulatory body. If factor is set 4 the transmission owner will receive 25% of benefit and remaining 75% is awarded to transmission users (Producers and customers). For calculation assume r=4 in this paper.

#### **IV. EVOLUTIONARY ALGORITHMS**

In artificial intelligence, an evolutionary algorithm is a subset of evolutionary computation, a generic population based Meta heuristic optimization algorithm. EA is mechanism inspired by biological evolution, such as reproduction, mutation, recombination and selection. In this paper we use two population based algorithm as genetic algorithm and particle swarm optimization [16].

#### A. Genetic algorithm

Genetic algorithm proceed to initialize a population of solutions and then to improve it through repetitive application of the mutation, crossover, inversion and selection operator [16].

a. initialization

In initialization, population size depends on the nature of problem. Initially population is generated randomly and in this paper population size and considered '50' with '200' generation limit.

e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765 www.ijareeie.com | Impact Factor: 6.392

||Volume 9, Issue 4, April 2020||

#### b. Selection

**IJAREEIE** 

During each successive generation, a proportion of the existive population is selected to breed a new generation. Certain selection method rate the fitness of each solutions select the best solutions. With random population size time limit consider as '300' in this paper.

#### c. crossover and mutation

For each new solution to be produced a pair of parent solution is selected for breeding from the pool selected previously. By producing a child solution using the method of crossover and mutation [17].

#### d. Termination

Process will be terminated on fixed number of generation reached which set '200' in this paper.

#### e. Particle swarm optimization

Particle swarm optimization is population based technique and here use PSO in following computational steps:

f. Computational steps of particle swarm optimization

- 1. Generate size of swarm "no. of birds" randomly. In this paper no. of birds considers'50' for calculation.
- 2. Set dimension of problem and here consider '5' for calculation.
- 3. Set PSO parameter  $c_1=1.2$  and  $c_2=0.12$
- 4. Set PSO momentum or inertia w=0.9
- 5. Initialize the parameter and swarm, velocities and position, evaluate initial position, velocity update, swarm update, evaluate a new swarm and after this run main loop function.

#### V. RESULTS AND DISCUSSION

After execution of Postage stamp and mw-mile method with verification of Garver 6-bus and IEEE-RTS 24 bus system price contribution can be calculate across each load and generator. In this total annualized cost of transmission across Garver 6 bus test system is 0.340M€ and in IEEE-RTS 24 bus system is 139.105K€ [9]. After analysis with different level contributions of generator and load following results were found which describe as follows. Graphical representation of generator and load with cost in M€ determine in 6 bus and generator and load with % of total cost in M€ in IEEE-RTS 24 bus test system results. Results of both buses are as under:

#### A. Garver 6 bus test system results

a. Generator test:- Generator test perform with 6 buses and 3 generators. Total peak load is 760 MW while total installed generation capacity is 1100 MW. Postage stamp method is independent to power flow and transmission distance. So after increasing distance mw-mile is more efficient as compare to postage stamp method. Here generator contributes 0-50% contribution in total transmission cost.

|                                       |          | TABLE 1            | Postage stamp GGDF method for 6 bus test system in M€ |                     |                     |                     |                     |  |
|---------------------------------------|----------|--------------------|-------------------------------------------------------|---------------------|---------------------|---------------------|---------------------|--|
| Method                                | Producer | contribution<br>0% | contribution<br>10%                                   | contribution<br>20% | contribution<br>30% | contribution<br>40% | contribution<br>50% |  |
| Postage<br>stamp<br>method            | G1       | 0                  | 0.0067                                                | 0.0134              | 0.0201              | 0.0268              | 0.0335              |  |
|                                       | G3       | 0                  | 0.0149                                                | 0.0298              | 0.0447              | 0.0596              | 0.0745              |  |
|                                       | G6       | 0                  | 0.0123                                                | 0.0247              | 0.0371              | 0.0495              | 0.0619              |  |
| Total price of generator contribution |          | 0                  | 0.034                                                 | 0.0679              | 0.1019              | 0.1359              | 0.1699              |  |

..... ~~~~ . . . . . . . . . . .

# IJAREEIE

## | e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| <u>www.ijareeie.com</u> | Impact Factor: 6.392|

#### ||Volume 9, Issue 4, April 2020||

| Method                                | Producer | contribution<br>0% | contribution<br>10% | contribution<br>20% | contribution<br>30% | contribution<br>40% | contribution<br>50% |
|---------------------------------------|----------|--------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Mega watt<br>mile<br>method           | G1       | 0                  | 0.0041              | 0.0083              | 0.0125              | 0.0167              | 0.0209              |
|                                       | G3       | 0                  | 0.0119              | 0.0238              | 0.0357              | 0.0477              | 0.0596              |
|                                       | G6       | 0                  | 0.0178              | 0.0357              | 0.0536              | 0.0715              | 0.0894              |
| Total price of generator contribution |          | 0                  | 0.0338              | 0.0678              | 0.1018              | 0.1359              | 0.1699              |

**TABLE 2** Mega watt mile GGDF method for 6 bus test system in M€

b. Load test

|                             |          | TABLE 3              | Postage stamp G     | LDF method for 6 b  | ous test system in M | €                   |                     |
|-----------------------------|----------|----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|
| Method                      | Customer | contribution<br>100% | contribution<br>90% | contribution<br>80% | contribution<br>70%  | contribution<br>60% | contribution<br>50% |
| Postage                     | L1       | 0.0357               | 0.0322              | 0.0286              | 0.025                | 0.0214              | 0.0178              |
|                             | L2       | 0.1073               | 0.0966              | 0.0858              | 0.0751               | 0.0644              | 0.0536              |
| stamp                       | L3       | 0.0178               | 0.0161              | 0.0143              | 0.0125               | 0.0107              | 0.0089              |
| method                      | L4       | 0.0715               | 0.0644              | 0.0572              | 0.0501               | 0.0429              | 0.0357              |
|                             | L5       | 0.1073               | 0.0966              | 0.0858              | 0.0751               | 0.0644              | 0.0536              |
| Total price of contribution | f load   | 0.3396               | 0.3059              | 0.2717              | 0.2378               | 0.2038              | 0.1696              |

#### **TABLE 4** Mega watt mile GLDF method for 6 bus test system in M€

| Method                   | Customer | contribution<br>100% | contribution<br>90% | contribution<br>80% | contribution<br>70% | contribution<br>60% | contribution<br>50% |
|--------------------------|----------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
| Mega watt<br>mile method | L1       | 0.0378               | 0.0341              | 0.0302              | 0.0265              | 0.0227              | 0.0189              |
|                          | L2       | 0.079                | 0.0711              | 0.0632              | 0.0553              | 0.0474              | 0.0395              |
|                          | L3       | 0.0134               | 0.0121              | 0.0107              | 0.0094              | 0.008               | 0.0067              |
|                          | L4       | 0.0922               | 0.0829              | 0.0737              | 0.0645              | 0.0553              | 0.0461              |
|                          | L5       | 0.1173               | 0.1056              | 0.0938              | 0.0821              | 0.0704              | 0.0586              |
| Total price of location  | oad      | 0.3397               | 0.3058              | 0.2716              | 0.2378              | 0.2038              | 0.1698              |

#### B. IEEE-RTS 24 bus test system results

a. Generator test

Generator test perform with 24 buses, 38 lines and transformers, 10 committed generators. Total peak load is 2850MW and total installed generation capacity is 3405MW. Here show the results of generator to contributes 0-50% of total transmission pricing.

| <b>IABLE 5</b> Postage stamp GGDF method for 24 bus test system in K€ |          |                    |                     |                  |                     |                     |                     |  |
|-----------------------------------------------------------------------|----------|--------------------|---------------------|------------------|---------------------|---------------------|---------------------|--|
| Method                                                                | Producer | contribution<br>0% | contribution<br>10% | contribution 20% | contribution<br>30% | contribution<br>40% | contribution<br>50% |  |
| Postage                                                               | G1       | 0                  | 0.5648              | 1.1297           | 1.6945              | 2.2594              | 2.8243              |  |
|                                                                       | G2       | 0                  | 0.5648              | 1.1297           | 1.6945              | 2.2594              | 2.8243              |  |
| stamp                                                                 | G7       | 0                  | 1.0261              | 2.0523           | 3.0784              | 4.1046              | 5.1307              |  |
| memod                                                                 | G13      | 0                  | 1.6549              | 3.3099           | 4.9649              | 6.6199              | 8.2749              |  |
|                                                                       | G15      | 0                  | 0.492               | 0.0984           | 1.4761              | 1.9682              | 2.4602              |  |

**TABLE 5** Postage stamp GGDF method for 24 bus test system in K€



| e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| <u>www.ijareeie.com</u> | Impact Factor: 6.392|

### ||Volume 9, Issue 4, April 2020||

| G                                    | 316 | 0 | 1.3918  | 2.7836 | 4.1754  | 5.5672  | 6.9591  |
|--------------------------------------|-----|---|---------|--------|---------|---------|---------|
| G                                    | 318 | 0 | 3.0529  | 6.1058 | 9.1587  | 12.2116 | 15.2645 |
| G                                    | 621 | 0 | 3.0529  | 6.1058 | 9.1587  | 12.2116 | 15.2645 |
| G                                    | 622 | 0 | 0.7181  | 1.4362 | 2.1543  | 2.8724  | 3.5906  |
| G                                    | 323 | 0 | 1.3918  | 2.7836 | 4.1754  | 5.5672  | 6.9591  |
| Total price of generate contribution | or  | 0 | 13.9101 | 26.935 | 41.7309 | 55.6415 | 69.5522 |

|                               |          | TABLE 6            | Mega watt mile GG   | DF method for 24 b  | us test system in K€ |                     |                     |
|-------------------------------|----------|--------------------|---------------------|---------------------|----------------------|---------------------|---------------------|
| Method                        | Producer | contribution<br>0% | contribution<br>10% | contribution<br>20% | contribution<br>30%  | contribution<br>40% | contribution<br>50% |
|                               | G1       | 0                  | 1.1984              | 2.3969              | 3.5953               | 4.7938              | 5.9923              |
|                               | G2       | 0                  | 1.2098              | 2.4196              | 3.6294               | 4.8392              | 6.049               |
|                               | G7       | 0                  | 1.5638              | 3.1276              | 4.6915               | 6.2553              | 7.8191              |
|                               | G13      | 0                  | 0.8987              | 1.7975              | 2.6963               | 3.5951              | 4.4939              |
| Mega watt                     | G15      | 0                  | 0.6325              | 1.2651              | 1.8976               | 2.5302              | 3.1627              |
| mile method                   | G16      | 0                  | 0.5302              | 1.0605              | 1.5908               | 2.1211              | 2.6514              |
|                               | G18      | 0                  | 1.7256              | 3.4513              | 5.177                | 6.9027              | 8.6284              |
|                               | G21      | 0                  | 1.8084              | 3.6168              | 5.4253               | 7.2337              | 9.0421              |
|                               | G22      | 0                  | 1.7263              | 3.4526              | 5.1789               | 6.9052              | 8.6315              |
|                               | G23      | 0                  | 2.6163              | 5.2326              | 7.8489               | 10.4652             | 13.0815             |
| Total price of g contribution | enerator | 0                  | 13.91               | 27.8205             | 41.731               | 55.6415             | 69.5519             |

b. Load test:- In this test perform with 17 loads. Loads contributions are 50-100%.

|                  |          | TABLE 7              | Postage stamp GLI   | DF method for 24 b  | ous test system in F | K€                  |                     |
|------------------|----------|----------------------|---------------------|---------------------|----------------------|---------------------|---------------------|
| Method           | Customer | contribution<br>100% | contribution<br>90% | contribution<br>80% | contribution<br>70%  | contribution<br>60% | contribution<br>50% |
|                  | L1       | 5.2713               | 4.7442              | 4.217               | 3.6899               | 3.1628              | 2.6356              |
|                  | L2       | 4.7344               | 4.261               | 3.7875              | 3.3141               | 2.8406              | 2.3672              |
|                  | L3       | 8.7855               | 7.907               | 7.0284              | 6.1499               | 5.2713              | 4.3927              |
|                  | L4       | 3.6118               | 3.2506              | 2.8894              | 2.5282               | 2.1671              | 1.8059              |
|                  | L5       | 3.4654               | 3.1188              | 2.7723              | 2.4257               | 2.0792              | 1.7327              |
| Postage<br>stamp | L6       | 6.6379               | 5.9741              | 5.3103              | 4.6465               | 3.9827              | 3.3189              |
| method           | L7       | 6.101                | 5.4909              | 4.8808              | 4.2707               | 3.6606              | 3.0505              |
|                  | L8       | 8.3463               | 7.5116              | 6.677               | 5.8424               | 5.0078              | 4.1731              |
|                  | L9       | 8.5415               | 7.6873              | 6.8332              | 5.979                | 5.1249              | 4.2707              |
|                  | L10      | 9.5177               | 8.5659              | 7.6141              | 6.6623               | 5.7106              | 4.7588              |
|                  | L13      | 12.9343              | 11.6408             | 10.3474             | 9.054                | 7.7605              | 6.4671              |
|                  | L14      | 9.4689               | 8.522               | 7.5751              | 6.6282               | 5.6813              | 4.7344              |

| e-ISSN: 2278 – 8875, p-ISSN: 2320 – 3765| <u>www.ijareeie.com</u> | Impact Factor: 6.392|



#### ||Volume 9, Issue 4, April 2020||

|                                  | L15 | 15.4723  | 13.9251  | 12.3779  | 10.8306 | 9.2834  | 7.7361  |
|----------------------------------|-----|----------|----------|----------|---------|---------|---------|
|                                  | L16 | 4.8808   | 4.3927   | 3.9047   | 3.4166  | 2.9285  | 2.4404  |
|                                  | L18 | 16.2533  | 14.6279  | 13.0026  | 11.3773 | 9.7519  | 8.1266  |
|                                  | L19 | 8.8343   | 7.9509   | 7.0675   | 6.184   | 5.3006  | 4.4171  |
|                                  | L20 | 6.2475   | 5.6227   | 4.998    | 4.3732  | 3.7485  | 3.1237  |
| Total price of load contribution |     | 139.1042 | 125.1935 | 111.2832 | 97.3726 | 83.4623 | 69.5515 |

| TABLE 8 | Mega watt mile GLDF | F method for 24 bus test | svstem in K€ |
|---------|---------------------|--------------------------|--------------|
|---------|---------------------|--------------------------|--------------|

| Method                      | Customer | contribution<br>100% | contribution<br>90% | contribution<br>80% | contribution<br>70% | contribution<br>60% | contribution<br>50% |
|-----------------------------|----------|----------------------|---------------------|---------------------|---------------------|---------------------|---------------------|
|                             | L1       | 8.0175               | 7.2157              | 6.414               | 5.6122              | 4.8105              | 4.0087              |
|                             | L2       | 7.2635               | 6.5371              | 5.8108              | 5.0844              | 4.3581              | 3.6317              |
|                             | L3       | 9.2995               | 8.3696              | 7.4396              | 6.5096              | 5.5797              | 4.6497              |
|                             | L4       | 5.3832               | 4.8449              | 4.3066              | 3.7682              | 3.2299              | 2.6916              |
|                             | L5       | 4.8318               | 4.3486              | 3.8654              | 3.3822              | 2.8991              | 2.4159              |
|                             | L6       | 8.9566               | 8.061               | 7.1653              | 6.2696              | 5.374               | 4.4783              |
|                             | L7       | 10.5031              | 9.4528              | 8.4025              | 7.3522              | 6.3019              | 5.2515              |
| Mega watt                   | L8       | 12.3984              | 11.1586             | 9.9187              | 8.6789              | 7.439               | 6.1992              |
| mile                        | L9       | 8.202                | 7.3818              | 6.5616              | 5.7414              | 4.9212              | 4.101               |
| method                      | L10      | 10.2204              | 9.1983              | 8.1763              | 7.1542              | 6.1322              | 5.1102              |
|                             | L13      | 11.248               | 10.1232             | 8.9984              | 7.8736              | 6.7488              | 5.624               |
|                             | L14      | 5.9957               | 5.3961              | 4.7965              | 4.1969              | 3.5974              | 2.9978              |
|                             | L15      | 10.4308              | 9.3877              | 8.3446              | 7.3015              | 6.2584              | 5.2154              |
|                             | L16      | 3.1045               | 2.794               | 2.4836              | 2.1731              | 1.8627              | 1.5522              |
|                             | L18      | 12.2794              | 11.0515             | 9.8235              | 8.5956              | 7.3676              | 6.1397              |
|                             | L19      | 6.1892               | 5.5703              | 4.9514              | 4.3324              | 3.7135              | 3.0946              |
|                             | L20      | 4.7805               | 4.3025              | 3.8244              | 3.3464              | 2.8683              | 2.3902              |
| Total price of contribution | load     | 139.1041             | 125.1937            | 111.2832            | 97.3724             | 83.4623             | 69.5517             |

#### VI. CONCLUSION

Wheeling price calculation is become a challenging task due to deregulation. Every step price calculation for each unit of generator and load is very necessary for fair and straightforward competition. Wheeling pricing calculation at different level is also a necessary task due to know availability status and consumption of power because it cannot be constant ever. This approach has been implemented on Garver 6 bus and IEEE-RTS 24 bus test system and helpful to know every step calculation of wheeling prices. With this comparison and verification of postage stamp and mw-mile method shows the superiority of mw-mile approach in presence of power flow and with increase in distance.

IJAREEIE

| e-ISSN: 2278 - 8875, p-ISSN: 2320 - 3765| www.ijareeie.com | Impact Factor: 6.392|

||Volume 9, Issue 4, April 2020||

#### REFERENCES

- 1 M. Shahidehpour, H.Yamin, and Z. Li, Market operations in electric power systems: Forecasting, scheduling and risk management. J.Wiley & sons, New York, 2002.
- 2 Marangon Lima, J.W., "Allocation of transmission fixed charges: An overview", IEEE Trans.Power Trans. Power Appart. Syst., 1996, 11,(3),pp.1409-1418.
- 3 Shirmohammedi, D. Filho, X.V. Gorenstin B. and Pereira, M.V.P., "Some fundamental technical concepts about cost based transmission pricing:, IEEE Trans. Power syst. 1996,11,(2),pp.1002-1008.
- 4 Ross, R.K.,and Allen, L.L., "A load flow based method for calculating embedded, incremental and marginal cost of transmission capacity", IEEE Trans. Power Syst., 1994,9,(1),pp.272-278.
- 5 Happ,H.H., "Cost of wheeling methodologies", IEEE Trans. Power Syst., 1994,9,(1), pp.147-156.
- 6 Park Y.M., Park J.B., Lim, J.U. and Won, J.R., "An analytical approach for transaction costs Allocation in transmission system", IEEE Trans. Power syst. 1998,13,(4),pp.1407-1412.
- 7 Lee, W.J., Lin, C.H. and Swift, L.D., "Wheeling charge under a deregulated environment", IEEE Trans. Ind. Appl., 2001, 37, (1), pp. 178-183.
- 8 N. Kumar, Y.R.V. Reddy, D.Das and N.P.Padhy, "Allocation of transmission charge by using MVA-mile approaches for restructured Indian power utility", IEEE international conference on power and energy society, san diego, CA, 24-29 July 2011, pp.1-6.
- 9 K.L.Lo, M.Y. Hassan and S. Jovanovic, "Assessment of MW-mile method for pricing transmission services: a negative flow sharing approach", IET Gener. Transm. Distrib.,1,(6),pp.904-911.
- 10 J. Pan, Y. Teklu, S. rahman and K. Jun, "Review of usage-based transmission cost allocation methods under open access", IEEE Trans. Power Syst.15 (2000), 1218-1224.
- 11 G. Orfanos, G. Tzasiou, P. Georgilakis, and N. Hatziargyriou, "Evaluation of transmission pricing methodologies for pool based electricity markets", in proc. IEEE power tech conf., Trondheim, Norway, 2011.
- 12 Kischen D., Allan R. and Strbac G.1997, Contributions of Individual Generators to Loads and Flow, *IEEE Transactions on Power Systems*, 12(1): 52-66
- 13 .L. G. Manescu, D. Rusinaru, P. Dadulescu, and V. Anghelina, Usage based allocation for transmission costs under open access. In: Proc. of IEEE Bucharest PowerTech Conf., Bucharest, Romania, June 28–July 2, 2009.
- 14 Barcia P. and Pestana R. 2010, Tracing the Flows of Electricity, *Electrical Power and Energy Systems*, 32(4): 329-332.
- 15 Ng Wai Y. 1981, Generalized Generation Distribution Factors for Power System Security Evaluations, IEEE Transaction on Power Apparatus and Systems, PAS 100(3): 1001-1005.
- 16 S.N.Sivanandam, S.N. Deepa, "Principles of soft computing: second edition", www.wileyindia.com
- 17 Naresh.B, Sailaja Kumari.M, Sydulu.M, "Transmission Cost Allocation using Power Flow Tracing And Genetic Algorithm", IEEE international conference on intelligent system (IS), 7-9 July 2010, pp. 432-437.