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ABSTRACT: This paper studies the stochastic behavior of the LMS and NLMS algorithms for a system identification 

framework when the input signal is a cyclostationary white Gaussian process. The input cyclostationary signal is simulated 

by a white Gaussian random process with sporadically time varying power. Mathematical models are derived for the mean 

and mean square-deviation (MSD) conduct of the adaptive weights with the input cyclostationarity. These models are also 

employed to the non-stationary system with a random walk variation of optimal weights. Monte Carlo simulations of the 

two algorithms provides strong support for the theory. Finally, the functioning of the two algorithms is compared for a va-

riety of assumptions. 
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I.INTRODUCTION 

 

A significant aspect of adaptive filter functioning is the ability to track the time fluctuations of the fundamental 

signal statistics. The standard analytical model accepts the input signal is stationary. However, a non-stationary signal 

model can be allowed by a random walk model for the optimum weights. The form of the mean-square error performance 

surface remains unchanged while the surface actuates in the weight space overtime. This model puts up the conditions for 

the   adaptive algorithm to get over the optimum solution. Alternatively, the input signal can be modeled as a cyclostatio-

nary process in many practical applications.  In these cases, the form of the performance surface is periodic with the same 

period as the input autocorrelation   matrix. This performance surface contortion affects the adaptive filter intersection and 

is freelance of changes in the optimum weights. This transient functioning surface deformation can be modeled by standard 

analytical models. However, it is still worthy to represent the adaptive functioning with non-stationary inputs. 

This type of analysis is fundamentally absent from the technical literature. A begin analysis of the Least-Mean 

Square behavior for cyclostationary inputs examined only its convergence in the mean. The peculiar case of a pulsed varia-

tion of the input power and a linear combiner structure has latterly been analyzed for both LMS and NLMS algorithms. An 

analysis of the Least Mean Fourth (LMF) algorithm behavior for non-stationary inputs has been recently introduced. The 

analytical model deduced for the LMF behavior was effectual only for a specific form of the input auto-correlation matrix, 

and can’t be easily lengthened to a general time-varying input statistics. Also, as the LMF weight update equation is a part 

of a higher power of the estimation error, the statistical supposals used are inevitably different from those desired for the 

analysis of the LMS and NLMS algorithms. Hence, the comparative analyses of the behaviors of the LMS and NLMS 

algorithms under cyclostationary inputs cannot be inferred from the analysis and new models must be plagiarized. 

Adaptive solutions implying cyclostationary signals are used for many application areas. Particularly, communi-

cation, radar, and sonar systems extensively need such solutions, as several man-made signals come across in these areas 

have parameters that vary periodically with time. Studied  adaptive beam forming algorithms for applications where inputs 

are cyclostationary. Projected an adaptive minimum variance equalizer that feats the cyclostationarity attributes of the in-

ter-symbol and adjacent channel interferences. Objected, a gradient based adaptive beam forming algorithm that exploits 

the cyclostationarity of the input signal. Employed adaptive  filtering to educe cyclostationary interference from speech 

signals. The reader is directed before a survey on the significance of cyclostationary signals in several areas, letting in 
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communications, channel identification and equalization. Therefore, a statistical analysis of adaptive algorithms under cyc-

lostationary inputs could have a significant effect on a wide variety of areas demanding cyclostationary processes. 

The adaptive filter behavior analysis for cyclostationary inputs quite difficult because of the trouble of modeling 

the input cyclostationarity in a mathematically dealable way. Thus, comparatively simple models are required from which 

gives the algorithm behavior for inputs with time varying statistics. 

 

 
Fig.1. System identification framework. 

 

This  paper introduces random analyses of the Least Mean Square(LMS)and the Normalized Least Mean 

Square(NLMS) algorithms with particular cyclostationary  input signals  and an unknown system  in a system  identifica-

tion framework. The input  cyclostationary signal is patterned by a white  Gaussian random action  with periodically time-

varying power.  These models are used to examine  the adaptive filter functioning for input signals with sinusoidal  and 

pulsed power variations and a transversal filter structure. The study in[15],[16]is shown to be a specific case of  the new 

results. The events  of fast, moderate and slow power variations are considered. Mathematical models are deduced for the 

mean and mean-square-deviation(MSD) doings of  the adaptive weights with these input cyclostationarities.  These mod-

els are deduced via extension of well-known results for the LMS and NLMS algorithms  to the cyclostationary  case. These 

models are also implemented to the non- stationary channel with a random walk variation of the optimal weights. Simula-

tion results appears excellent agreement with the theoretically  prefigured behaviors, confirming the utility of the analytical 

model to study the adaptive filter behavior. 

 

II. PROBLEM DEFINITION 

A. System Identification and the Markov Channel Model 

  This paper deals with the system identification model given in fig 1. The N-dimensional input vector to the adap-

tive filter tap weights is given by  

X(N)=[ x(n),x(n-1),……., x(n-N+1)]
T 

 

Where T indicates the transpose. The noticed noise n0 (n) is considered as zero-mean white Gaussian noise with variance  

 and independed of X(n). The standard random walk model  for  unknown channel is given by  

H(n-1)= H(n) +Q(n)   

Where H(n) is channel response and Q(n) is white Gaussian vector with zero mean and covariance matrix is 

E[Q(n)Q
T
(n)]= I , whre I is identity matrix. The vector sequence Q(n)  is independent of both X(n) and n0 (n). 
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B .Independence  Theory and Performance Measure 

The independence theory of adaptive filtering assumes that weights are statically independent of  input vector at 

time n. The use of this assumption considerably simplifies the statistical analysis of adaptive filter applications. The MSD is 

given by 

MSD(n)= E[(W(n)-H(n)) (W(n)-H(n))
T 

]=Tr[Kvv(n)] 

W(n) is the weight vector of adaptive filter at time n, Tr[B] is the trace of matrix B and  

KVV [n]=E[(W(n)-H(n)) (W(n)-H(n))
T 

] 

C. Cyclostationary Input Signal Model 

A Cyclostationary random process y(t) is defined as 

E[y(t1+T)]=E[y(t1)] 

E[y(t1+T)(t2+T)]=E[y(t1)y(t2)] 

For all t1 and t2 and where T is the period. In the present paper  it is assumed  that X(n) is a zero mean white Gaussian vec-

tor with time-varying variance  

Rx(n)= E[X(n)X
T 

(n)]  =diag [  

Where  (n)  is periodic with period T. Hence, X(n) is a discrete time wide sense cyclostationary process. Although this 

model is not general, it defines a non-trivial model. It allows the input to display a simple type of cyclostationarity which 

can be used to model more complex time varying statically properties of the inputs. More importantly, the behavior of the 

LMS and NLMS algorithms can be accurately analyzed for this inputs signal as will be shown subsequently. Two simple 

models for   are considered here: a sinusoidal power time variation  

 

) 

For  

The sinusoidal variation model can be used to study the algorithm behavior for different speeds of input power 

variation with bounded maximum power.  

III STOCHASTIC ANALYSIS OF LMS ALGORITHM 

The LMS weight update recursions is  

W(n+1)=W(n)+µe(n)X(n) 

Where  

e(n)=H
T 

(n)X(n)+no(n)-W
T
(n)X(n) 
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And the µ is step-size. Defining the weight error vector  V(n)=W(n)-H(n) 

V(n+1)={ I-µX(n)X
T
(n)}V(n)+µno(n)X(n)-Q(n) 

A. LMS Mean Behavior 

Ensemble averaging both sides and using independent theory yields    

E[V(n+1)]={i-µRx (n)}e[V(n)] 

The formal solution is 

E[V(n+1)]= (i)]V(0) 

B. LMS MSD Behavior 

By using e(n)=V
T
( n)X(n)+n0(n), post multiplying by its transpose and averaging, yields  

Kvv(n+1)=Kvv- µ[Rx(n)Kvv(n)+Kvv(n)Rx(n)+ µ
2
E[X(n)X

T
(n)Kvv(n) X(n)X

T
(n)]+ µ

2
Rx(n)+ (n)I 

Where the independent theory and the above assumptions  n0(n) and Q(n) are used. For zero-mean Gaussian X(n), the ex-

pectation is  

E[X(n)X
T
(n)Kvv(n) X(n)X

T
(n)]=2RxKvv(n)Rx(n)+Tr[Rx(n)Kvv(n)]Rx(n) 

In this we discussed about slow, fast and moderate power variations  

a. Slow variations  

The variations are considered as slow power variations when the length of the filter N is far less than the 

time period of cyclostationary input signal T. i.e N<<< T  

b. Fast variations 

The variations are considered as slow power variations when the length of the filter N is far greater than 

the time period of cyclostationary input signal T. i.e N>>>T  

 

c. Moderate Speed Variations 

The variations are considered as slow power variations when the length of the filter N is nearly equals to 

the time period of cyclostationary input signal T. i.e N ~= T  

 

IV. STOCHASTIC ANALYSIS OF THE NLMS ALGORITHM 

The NLMS weight update recursion is 

W1(N+1)=W1(N)+  
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Wheree1(n)=H
T
(n)X(n)+n0(n)-w1

T
(n)X(n) 

 

 
A. NLMS Mean Behavior 

Using independence theory and ensemble averaging on both sides of above equation we 

get  

 

B. NLMS MSD Behavior 

Proceeding in similar manner to the least mean square MSD analysis gives the matrix recursion  

 
 

a. Slow variations  

The variations are considered as slow power variations when the length of the filter N is far less than the time 

period of cyclostationary input signal T. i.e N<<< T  

b. Fast variations 

The variations are considered as slow power variations when the length of the filter N is far greater than the 

time period of cyclostationary input signal T. i.e N>>>T  

 

c. Moderate Speed Variations 

 

The variations are considered as slow power variations when the length of the filter N is nearly equals to the 

time period of cyclostationary input signal T. i.e N ~= T  

 

 

 



 

              ISSN (Print)  : 2320 – 3765 

              ISSN (Online): 2278 – 8875 

 

International Journal of Advanced Research in  Electrical, 

Electronics and Instrumentation Engineering 

(An ISO 3297: 2007 Certified Organization) 

Vol. 4, Issue 12, December 2015 

Copyright to IJAREEIE                                                        DOI:10.15662/IJAREEIE.2015.0412054                                                    9905      

V. MONTE CARLO SIMULATIONS FOR COMPARISION WITH THEORITICAL VALUES 

The Monte Carlo simulations of the mean square deviation values are compared with the theoretical mean square 

deviation values for the sinusoidal power variations for both fixed and time varying channels are presented below. 

  

 

 

 
 

 

Fig.: For LMS fixed channel (a) fast variations, 

(b) moderate variations and (c) Slow variations 
Fig.: For LMS time-varying channel (a) fast varia-

tions, (b) moderate variations and (c) Slow variations 
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Fig.: For NLMS fixed channel (a) fast varia-

tions, (b) moderate variations and (c) Slow vari-

ations 

Fig.: For NLMS time-varying channel (a) fast var-

iations, (b) moderate variations and (c) Slow varia-

tions 
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VI. COMPARISION BETWEEN LMS AND NLMS ALGORITHMS 

 

S. N0 

 

 

SIMILARITIES 

 

DIFFERENCES 

 

 

1. 

 

 

 

      2. 

 

For periodic input power variations, the 

mean square deviation converges to a pe-

riod sequence with period same as input. 

 

Neither transient nor steady-state perfor-

mance is affected by rapid input power var-

iations.  

 

 

For slow input power variations, the transient NLMS 

MSD doesn’t depend on rate of variation of input 

power while LMS MSD does. 

 

For a fixed plant with slow input power variations, the 

steady-state LMS MSD has negligible time-variations 

while NLMS MSD has significant time-variations.  

 

 

VII. CONCLUSIONS  

The study of adaptive filters with non-stationary inputs is a very complex subject.  In this the performances of the 

two algorithms are compared and the NLMS algorithm is chosen on the basis of stability, transient response and steady-

state behavior. The results of this paper suggest that the NLMS algorithm (with regularization) can be used effectively 

with cyclostationary inputs such as voice data. Indeed, this is precisely the behavior that is observed, for instance, with 

most voice-band echo cancellers. 
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